Two Novel Space-Time Coding Techniques Designed for UWB MISO Systems Based on Wavelet Transform
نویسندگان
چکیده
In this paper two novel space-time coding multi-input single-output (STC MISO) schemes, designed especially for Ultra-Wideband (UWB) systems, are introduced. The proposed schemes are referred to as wavelet space-time coding (WSTC) schemes. The WSTC schemes are based on two types of multiplexing, spatial and wavelet domain multiplexing. In WSTC schemes, four symbols are transmitted on the same UWB transmission pulse with the same bandwidth, symbol duration, and number of transmitting antennas of the conventional STC MISO scheme. The used mother wavelet (MW) is selected to be highly correlated with transmitted pulse shape and such that the multiplexed signal has almost the same spectral characteristics as those of the original UWB pulse. The two WSTC techniques increase the data rate to four times that of the conventional STC. The first WSTC scheme increases the data rate with a simple combination process. The second scheme achieves the increase in the data rate with a less complex receiver and better performance than the first scheme due to the spatial diversity introduced by the structure of its transmitter and receiver. The two schemes use Rake receivers to collect the energy in the dense multipath channel components. The simulation results show that the proposed WSTC schemes have better performance than the conventional scheme in addition to increasing the data rate to four times that of the conventional STC scheme.
منابع مشابه
Implementation of VlSI Based Image Compression Approach on Reconfigurable Computing System - A Survey
Image data require huge amounts of disk space and large bandwidths for transmission. Hence, imagecompression is necessary to reduce the amount of data required to represent a digital image. Thereforean efficient technique for image compression is highly pushed to demand. Although, lots of compressiontechniques are available, but the technique which is faster, memory efficient and simple, surely...
متن کاملDesign and Analysis of Space-time Block and Trellis Coding Schemes for Single-Band UWB Communications Systems
Ultra Wide-Band (UWB) technology has recently attracted much research interest due to its appealing features in short-range mobile communications. These features include high-data rates, low power consumption, multiple-access communications and precise positioning capabilities. Space-Time Coding (STC) techniques, such as block coding and trellis coding, are known to be simple and practical ways...
متن کاملMEDICAL IMAGE COMPRESSION: A REVIEW
Within recent years the use of medical images for diagnosis purposes has become necessity. The limitation in transmission and storage space also growing size of medical images has necessitated the need for efficient method, then image Compression is required as an efficient way to reduces irrelevant and redundancy of the image data in order to be able to store or transmits data. It also reduces...
متن کاملSingle-Carrier Frequency-Domain Equalization for Orthogonal STBC over Frequency-Selective MIMO-PLC channels
In this paper we propose a new space diversity scheme for broadband PLC systems using orthogonal space-time block coding (OSTBC) transmission combined with single-carrier frequency-domain equalization (SC-FDE). To apply this diversity technique to PLC channels, we first propose a new technique for combining SC-FDE with OSTBCs applicable to all dispersive multipath channels impaired by impulsive...
متن کاملDesign and Performance Analysis of a Space-Time Block Coding scheme for Single Band UWB
Ultra wide-band (UWB) systems have recently attracted much research interest owing to their appealing features in short-range mobile communications. These features include high data rates, low power consumption, multiple access communications, and precise positioning capabilities. Space-time coding techniques, such as the block coding scheme or the trellis coding scheme, are known to be simple ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016